Skip to content

Nambu–Goto and Polyakov Actions

This page defines the Nambu–Goto and Polyakov actions for a bosonic string, proves their classical equivalence, and explains why one introduces an independent worldsheet metric γab\gamma_{ab}.

  • Worldsheet coordinates σa=(τ,σ)\sigma^a=(\tau,\sigma), a=0,1a=0,1.
  • Target‑space coordinates Xμ(σ)X^\mu(\sigma), μ=0,,D1\mu=0,\dots,D-1, with background metric Gμν(X)G_{\mu\nu}(X) (flat case: Gμν=ημνG_{\mu\nu}=\eta_{\mu\nu}).
  • Induced (pullback) metric on the worldsheet: habaXμbXνGμν(X).h_{ab} \equiv \partial_a X^\mu\,\partial_b X^\nu\,G_{\mu\nu}(X).
  • String tension: T12πα.T \equiv \frac{1}{2\pi\alpha'}.
  • Worldsheet signature (+)(-+) (Euclideanization is straightforward).

“Area = tension × area of the worldsheet”:

SNG[X]  =  Td2σdethab  =  Td2σh.S_{\text{NG}}[X] \;=\; -\,T \int d^2\sigma\, \sqrt{-\det h_{ab}} \;=\; -\,T \int d^2\sigma\, \sqrt{-h}.
  • Symmetry: worldsheet diffeomorphisms (reparametrizations).

Introduce an independent worldsheet metric γab\gamma_{ab}:

SP[X,γ]  =  T2d2σγγabaXμbXνGμν(X)  =  T2d2σγγabhab.S_{\text{P}}[X,\gamma] \;=\; -\,\frac{T}{2}\int d^2\sigma\,\sqrt{-\gamma}\,\gamma^{ab}\,\partial_a X^\mu \partial_b X^\nu G_{\mu\nu}(X) \;=\; -\,\frac{T}{2}\int d^2\sigma\,\sqrt{-\gamma}\,\gamma^{ab}h_{ab}.
  • Symmetries: worldsheet diffeomorphisms and local Weyl (scale) transformations γabe2ω(σ)γab\gamma_{ab}\to e^{2\omega(\sigma)}\gamma_{ab}. In 2D, γγab\sqrt{-\gamma}\,\gamma^{ab} is Weyl invariant.

Classical equivalence: eliminating γab\gamma_{ab}

Section titled “Classical equivalence: eliminating γab\gamma_{ab}γab​”

Vary SPS_{\text{P}} with respect to γab\gamma^{ab}. Using δγ=12γγcdδγcd\delta\sqrt{-\gamma} = -\tfrac12\sqrt{-\gamma}\,\gamma_{cd}\,\delta\gamma^{cd}, one finds the (symmetric, conserved) worldsheet stress tensor:

Tab    2γδSPδγab  =  T(hab12γabγcdhcd)  =  0.T_{ab} \;\equiv\; -\frac{2}{\sqrt{-\gamma}}\frac{\delta S_{\text{P}}}{\delta\gamma^{ab}} \;=\; -T\left(h_{ab}-\tfrac12\gamma_{ab}\,\gamma^{cd}h_{cd}\right) \;=\; 0.

Define

Λ(σ)    12γcdhcd.\Lambda(\sigma) \;\equiv\; \tfrac12\,\gamma^{cd}h_{cd}.

Then the constraint becomes

hab=Λγab.()h_{ab} = \Lambda\,\gamma_{ab}. \qquad (\star)

Thus, on shell the auxiliary metric is conformally equivalent to the induced metric.

Now evaluate SPS_{\text{P}} on the γ\gamma-equation of motion:

  1. From hab=Λγabh_{ab}=\Lambda\gamma_{ab}, determinants obey

    hdethab=Λ2detγab=Λ2γh=γΛ.h \equiv \det h_{ab} = \Lambda^2 \det\gamma_{ab} = \Lambda^2 \gamma \quad\Rightarrow\quad \sqrt{-h} = \sqrt{-\gamma}\,\Lambda.
  2. Then

    SPγ-eom=T2d2σγγab(Λγab)=Td2σγΛ=Td2σh=SNG.S_{\text{P}}\big|_{\gamma\text{-eom}} = -\frac{T}{2}\int d^2\sigma\,\sqrt{-\gamma}\,\gamma^{ab}(\Lambda\gamma_{ab}) = -T\int d^2\sigma\,\sqrt{-\gamma}\,\Lambda = -T\int d^2\sigma\,\sqrt{-h} = S_{\text{NG}}.

Hence SPS_{\text{P}} and SNGS_{\text{NG}} are classically equivalent once the auxiliary metric is eliminated.


Equations of motion for XμX^\mu (consistency check)

Section titled “Equations of motion for XμX^\muXμ (consistency check)”

From Polyakov:

1γa ⁣(γγabbXμ)+Γ  ρσμ(X)γabaXρbXσ=0.\frac{1}{\sqrt{-\gamma}}\partial_a\!\left(\sqrt{-\gamma}\,\gamma^{ab}\partial_b X^\mu\right) + \Gamma^\mu_{\;\rho\sigma}(X)\,\gamma^{ab}\partial_a X^\rho\partial_b X^\sigma = 0.

From Nambu–Goto (minimal surface equation):

1ha ⁣(hhabbXμ)+Γ  ρσμ(X)habaXρbXσ=0.\frac{1}{\sqrt{-h}}\partial_a\!\left(\sqrt{-h}\,h^{ab}\partial_b X^\mu\right) + \Gamma^\mu_{\;\rho\sigma}(X)\,h^{ab}\partial_a X^\rho\partial_b X^\sigma = 0.

Using hab=Λγabhab=Λ1γabh_{ab}=\Lambda\gamma_{ab} \Rightarrow h^{ab}=\Lambda^{-1}\gamma^{ab} and h=γΛ\sqrt{-h}=\sqrt{-\gamma}\Lambda, we get the 2D identity

γγab=hhab,\sqrt{-\gamma}\,\gamma^{ab} = \sqrt{-h}\,h^{ab},

so the XμX^\mu equations coincide exactly.


Why introduce the auxiliary metric γab\gamma_{ab}?

Section titled “Why introduce the auxiliary metric γab\gamma_{ab}γab​?”
  1. Linearization of the square root.
    SNGS_{\text{NG}} has a nonpolynomial deth\sqrt{\det h}. The Polyakov action is quadratic in XμX^\mu, making variation and quantization tractable.
    Analogy (point particle):

    S=m ⁣ ⁣dτX˙2    S=12 ⁣ ⁣dτ(X˙2eem2),S = -m\!\int\! d\tau\,\sqrt{-\dot X^2} \;\Longleftrightarrow\; S = \tfrac12\!\int\! d\tau\left(\frac{\dot X^2}{e} - e\,m^2\right),

    with the einbein e(τ)e(\tau) playing the role of γab\gamma_{ab}.

  2. Gauge structure: 2D gravity on the worldsheet.
    SPS_{\text{P}} has diffeomorphism × Weyl invariance. In 2D, a symmetric metric has 3 components and these 3 gauge freedoms let you fix to conformal gauge

    γab=e2ϕ(σ)ηab,\gamma_{ab} = e^{2\phi(\sigma)}\eta_{ab},

    exposing a free 2D CFT for the XμX^\mu fields plus ghosts.

  3. Transparent constraints (Virasoro).
    Varying γab\gamma_{ab} imposes Tab=0T_{ab}=0. In conformal gauge and light‑cone coordinates σ±=τ±σ\sigma^\pm=\tau\pm\sigma,

    T++=+X+X=0,T=XX=0.T_{++} = \partial_+ X \cdot \partial_+ X = 0, \qquad T_{--} = \partial_- X \cdot \partial_- X = 0.

    These are the Virasoro constraints; in Nambu–Goto they are present but less manifest.

  4. Clean path integral over geometries.
    The Polyakov formulation separates the sum over embeddings and intrinsic geometries:

    DγDXDiff×WeyleSP\int \frac{\mathcal D\gamma\,\mathcal DX}{\text{Diff}\times\text{Weyl}}\,e^{-S_{\text{P}}}

    which, after gauge‑fixing, becomes an integral over moduli (complex structures) of the Riemann surface. The Nambu–Goto form hides this structure inside the nonpolynomial measure.

  5. Intrinsic curvature couplings.
    Terms such as the Euler characteristic  ⁣γR(γ)\int\!\sqrt{-\gamma}\,R(\gamma) or the dilaton coupling

    14πd2σγΦ(X)R(γ)\frac{1}{4\pi}\int d^2\sigma\,\sqrt{-\gamma}\,\Phi(X)\,R(\gamma)

    require an intrinsic metric γab\gamma_{ab}. Superstrings also need a zweibein/spin connection on the worldsheet.

  6. Same physical degrees of freedom.
    DD scalars XμX^\mu + 3 components of γab\gamma_{ab} − (2 diffeos + 1 Weyl) gauge = DD fields with 2 first‑class constraints ⇒ D2D-2 transverse modes—exactly as in Nambu–Goto.


In conformal gauge γab=e2ϕηab\gamma_{ab}=e^{2\phi}\eta_{ab}, the action simplifies to

SP=T2d2σηabaXbX,S_{\text{P}} = -\frac{T}{2}\int d^2\sigma\,\eta^{ab}\,\partial_a X\cdot\partial_b X,

while the dynamics is supplemented by the Virasoro constraints above. Boundary terms from δX\delta X give the usual Neumann/Dirichlet conditions for open strings in either formulation.


Classically, SNGS_{\text{NG}} and SPS_{\text{P}} are equivalent. Quantum‑mechanically, maintaining Weyl invariance (no conformal anomaly) picks out the critical dimension: bosonic string D=26D=26 (because free bosons contribute c=Dc=D and ghosts contribute c=26c=-26), and superstring D=10D=10. In these critical dimensions, the two formulations describe the same quantum theory.