A frequently used generalization of the Einstein–scalar system is the Einstein–Maxwell–dilaton (EMD) model
S E M D = ∫ M d 4 x − g ( R − 1 4 e − α ϕ F μ ν F μ ν − 1 2 ( ∂ ϕ ) 2 − V ( ϕ ) ) , F μ ν = ∂ μ A ν − ∂ ν A μ . S_{\rm EMD}
=\int_M d^4x\,\sqrt{-g}\left(
R-\frac14\,e^{-\alpha\phi}F_{\mu\nu}F^{\mu\nu}
-\frac12(\partial\phi)^2
- V(\phi)
\right),
\qquad F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu. S EMD = ∫ M d 4 x − g ( R − 4 1 e − α ϕ F μν F μν − 2 1 ( ∂ ϕ ) 2 − V ( ϕ ) ) , F μν = ∂ μ A ν − ∂ ν A μ .
To have a well-posed and finite variational problem in asymptotically AdS4 _4 4 , one works with
S t o t = S E M D + S G H Y + S c t + S b d y ( A ) , S G H Y = 1 8 π G ∫ ∂ M d 3 x − γ K , S_{\rm tot}=S_{\rm EMD}+S_{\rm GHY}+S_{\rm ct}+S_{\rm bdy}^{(A)},
\qquad
S_{\rm GHY}=\frac{1}{8\pi G}\int_{\partial M} d^3x\,\sqrt{-\gamma}\,K, S tot = S EMD + S GHY + S ct + S bdy ( A ) , S GHY = 8 π G 1 ∫ ∂ M d 3 x − γ K ,
and chooses the Maxwell boundary term S b d y ( A ) S_{\rm bdy}^{(A)} S bdy ( A ) according to the thermodynamic ensemble .
Coordinates and cutoff
Near the AdS boundary it is convenient to use Poincaré coordinates
d s 2 = d r 2 + η i j d x i d x j r 2 , r → 0. ds^2=\frac{dr^2+\eta_{ij}dx^i dx^j}{r^2},\qquad r\to 0. d s 2 = r 2 d r 2 + η ij d x i d x j , r → 0. We regulate the boundary at r = ε r=\varepsilon r = ε . On r = ε r=\varepsilon r = ε ,
− γ = r − 3 , n μ d x μ = d r r . \sqrt{-\gamma}=r^{-3},\qquad n_\mu dx^\mu=\frac{dr}{r}. − γ = r − 3 , n μ d x μ = r d r . A convenient gauge choice is A r = 0 A_r=0 A r = 0 , with near-boundary expansion (for d = 3 d=3 d = 3 )
A i ( r , x ) = a i ( x ) + r b i ( x ) + ⋯ . A_i(r,x)=a_i(x)+r\,b_i(x)+\cdots. A i ( r , x ) = a i ( x ) + r b i ( x ) + ⋯ .
Introduce the dilaton-dependent gauge coupling
Z ( ϕ ) ≡ e − α ϕ . Z(\phi)\equiv e^{-\alpha\phi}. Z ( ϕ ) ≡ e − α ϕ .
The Maxwell part of the action is
S A = − 1 4 ∫ M d 4 x − g Z ( ϕ ) F μ ν F μ ν . S_A=-\frac14\int_M d^4x\,\sqrt{-g}\,Z(\phi)\,F_{\mu\nu}F^{\mu\nu}. S A = − 4 1 ∫ M d 4 x − g Z ( ϕ ) F μν F μν .
Varying A ν A_\nu A ν and integrating by parts gives
δ S A = ∫ M d 4 x − g [ ∇ μ ( Z F μ ν ) ] δ A ν + ∫ ∂ M d 3 x − γ Z ( ϕ ) n μ F μ i δ A i . \delta S_A
=\int_M d^4x\,\sqrt{-g}\,\big[\nabla_\mu(ZF^{\mu\nu})\big]\delta A_\nu
+\int_{\partial M} d^3x\,\sqrt{-\gamma}\,Z(\phi)\,n_\mu F^{\mu i}\,\delta A_i. δ S A = ∫ M d 4 x − g [ ∇ μ ( Z F μν ) ] δ A ν + ∫ ∂ M d 3 x − γ Z ( ϕ ) n μ F μ i δ A i .
So the Maxwell equation is
∇ μ ( Z ( ϕ ) F μ ν ) = 0 , \nabla_\mu\!\left(Z(\phi)F^{\mu\nu}\right)=0, ∇ μ ( Z ( ϕ ) F μν ) = 0 ,
and the on-shell boundary variation is
δ S A ∣ E O M = ∫ ∂ M d 3 x π A i δ A i , π A i ≡ − γ Z ( ϕ ) n μ F μ i . \delta S_A\Big|_{\rm EOM}=\int_{\partial M} d^3x\,\pi_A^{\,i}\,\delta A_i,
\qquad
\pi_A^{\,i}\equiv \sqrt{-\gamma}\,Z(\phi)\,n_\mu F^{\mu i}. δ S A EOM = ∫ ∂ M d 3 x π A i δ A i , π A i ≡ − γ Z ( ϕ ) n μ F μ i .
For static, homogeneous charged backgrounds (typical in RG-flow thermodynamics), only the time component matters. In Lorentzian signature one often uses A t ( r ) A_t(r) A t ( r ) ; in Euclidean signature the thermal circle is parameterized by τ ∼ τ + β \tau\sim\tau+\beta τ ∼ τ + β and the relevant boundary datum is A τ A_\tau A τ .
A key simplification of EMD is that the radial electric flux is conserved:
∂ r ( π A τ ) = 0 ( for homogeneous solutions ) , \partial_r\big(\pi_A^{\,\tau}\big)=0
\qquad(\text{for homogeneous solutions}), ∂ r ( π A τ ) = 0 ( for homogeneous solutions ) ,
so π A τ \pi_A^{\,\tau} π A τ can be evaluated at the horizon or at the boundary and gives the same result.
The grand canonical ensemble fixes the chemical potential:
Z G C = T r exp [ − β ( H − μ Q ) ] , Ω ( T , μ ) = − 1 β log Z G C . Z_{\rm GC}=\mathrm{Tr}\,\exp\!\big[-\beta(H-\mu Q)\big],\qquad
\Omega(T,\mu) = -\frac{1}{\beta}\log Z_{\rm GC}. Z GC = Tr exp [ − β ( H − μ Q ) ] , Ω ( T , μ ) = − β 1 log Z GC .
Holographically, this corresponds to Dirichlet boundary conditions on the Euclidean time component of the gauge field:
A τ ∣ ∂ M = μ ⟺ δ A τ ∣ ∂ M = 0. A_\tau\big|_{\partial M}=\mu \quad\Longleftrightarrow\quad \delta A_\tau\big|_{\partial M}=0. A τ ∂ M = μ ⟺ δ A τ ∂ M = 0.
Then the Maxwell boundary variation vanishes automatically because δ A τ = 0 \delta A_\tau=0 δ A τ = 0 .
More physically, after holographic renormalization the (Euclidean) on-shell action satisfies
I E ( D i r ) ∣ o n - s h e l l = β Ω ( T , μ ) , I_E^{\rm (Dir)}\Big|_{\rm on\text{-}shell}=\beta\,\Omega(T,\mu), I E ( Dir ) on - shell = β Ω ( T , μ ) ,
and its variation reproduces the thermodynamic relation
δ I E ( D i r ) ∣ o n - s h e l l = − β Q δ μ ⟺ d Ω = − S d T − Q d μ . \delta I_E^{\rm (Dir)}\Big|_{\rm on\text{-}shell}
= -\beta\,Q\,\delta\mu
\qquad\Longleftrightarrow\qquad
d\Omega = -S\,dT - Q\,d\mu. δ I E ( Dir ) on - shell = − β Q δ μ ⟺ d Ω = − S d T − Q d μ .
Sign conventions
The sign in δ I E = − β Q δ μ \delta I_E=-\beta Q\,\delta\mu δ I E = − βQ δ μ matches standard thermodynamics. In terms of the canonical momentum π A τ \pi_A^{\,\tau} π A τ above, one often defines the (renormalized) charge density as
ρ ≡ − π A , r e n τ , \rho \equiv -\,\pi_{A,\rm ren}^{\,\tau}, ρ ≡ − π A , ren τ , so that δ I E ( D i r ) = − ∫ d 3 x ρ δ μ \delta I_E^{\rm (Dir)}=-\int d^3x\,\rho\,\delta\mu δ I E ( Dir ) = − ∫ d 3 x ρ δ μ .
Depending on whether one chooses an inward/outward radial normal (and Lorentzian vs Euclidean continuation), these minus signs can shift; the ensemble mapping below is unchanged.
The canonical ensemble fixes the charge:
Z C ( Q ) = T r Q exp ( − β H ) , F ( T , Q ) = − 1 β log Z C ( Q ) . Z_{\rm C}(Q)=\mathrm{Tr}_{Q}\,\exp(-\beta H),\qquad
F(T,Q)=-\frac{1}{\beta}\log Z_{\rm C}(Q). Z C ( Q ) = Tr Q exp ( − β H ) , F ( T , Q ) = − β 1 log Z C ( Q ) .
Thermodynamics gives the Legendre transform
F ( T , Q ) = Ω ( T , μ ) + μ Q , d F = − S d T + μ d Q . F(T,Q)=\Omega(T,\mu)+\mu Q,
\qquad
dF=-S\,dT+\mu\,dQ. F ( T , Q ) = Ω ( T , μ ) + μ Q , d F = − S d T + μ d Q .
Holographically, fixing Q Q Q means fixing the (renormalized) radial electric flux, i.e. a Neumann-type condition:
δ π A , r e n τ = 0 ( equivalently δ ρ = 0 ) . \delta \pi_{A,\rm ren}^{\,\tau}=0
\quad (\text{equivalently } \delta\rho=0). δ π A , ren τ = 0 ( equivalently δ ρ = 0 ) .
To make the variational principle compatible with this, we add a Legendre boundary term for the gauge field,
I L e g ( A ) ≡ − ∫ ∂ M d 3 x A τ π A τ = ∫ ∂ M d 3 x μ ρ ( using ρ = − π A τ as above ) . I_{\rm Leg}^{(A)} \equiv -\int_{\partial M} d^3x\,A_\tau\,\pi_A^{\,\tau}
\;=\; \int_{\partial M} d^3x\,\mu\,\rho
\quad(\text{using }\rho=-\pi_A^{\,\tau} \text{ as above}). I Leg ( A ) ≡ − ∫ ∂ M d 3 x A τ π A τ = ∫ ∂ M d 3 x μ ρ ( using ρ = − π A τ as above ) .
Then the total boundary variation becomes
δ ( I E ( D i r ) + I L e g ( A ) ) ∣ E O M = + ∫ d 3 x μ δ ρ , \delta\big(I_E^{\rm (Dir)}+I_{\rm Leg}^{(A)}\big)\Big|_{\rm EOM}
= +\int d^3x\,\mu\,\delta\rho, δ ( I E ( Dir ) + I Leg ( A ) ) EOM = + ∫ d 3 x μ δ ρ ,
so it vanishes for fixed ρ \rho ρ (canonical ensemble).
On-shell, the Legendre term implements the expected thermodynamic transformation:
I E ( N e u ) ∣ o n - s h e l l = I E ( D i r ) ∣ o n - s h e l l + β μ Q ⟺ F = Ω + μ Q . I_E^{\rm (Neu)}\Big|_{\rm on\text{-}shell}
= I_E^{\rm (Dir)}\Big|_{\rm on\text{-}shell} + \beta\,\mu Q
\qquad\Longleftrightarrow\qquad
F=\Omega+\mu Q. I E ( Neu ) on - shell = I E ( Dir ) on - shell + β μ Q ⟺ F = Ω + μ Q .
Rule of thumb
Grand canonical (fixed μ \mu μ ): Dirichlet on A τ A_\tau A τ and no extra gauge boundary term.
Canonical (fixed Q Q Q ): fix the electric flux (Neumann) and add the Legendre term − ∫ A τ π A τ -\int A_\tau \pi_A^{\,\tau} − ∫ A τ π A τ (equivalently + ∫ μ ρ +\int \mu\rho + ∫ μ ρ ).
More generally, one can impose a mixed (Robin) condition relating ρ \rho ρ and μ \mu μ , which is the gauge-field analogue of multi-trace scalar boundary conditions. Add a finite boundary functional W [ A ] W[A] W [ A ] and obtain
δ ( I r e n + W ) ∣ E O M = ∫ d 3 x ( π A , r e n i − δ W δ A i ) δ A i ⇒ π A , r e n i = δ W δ A i . \delta(I_{\rm ren}+W)\Big|_{\rm EOM}
=\int d^3x\,\Big(\pi_{A,\rm ren}^{\,i}-\frac{\delta W}{\delta A_i}\Big)\delta A_i
\qquad\Rightarrow\qquad
\pi_{A,\rm ren}^{\,i}=\frac{\delta W}{\delta A_i}. δ ( I ren + W ) EOM = ∫ d 3 x ( π A , ren i − δ A i δ W ) δ A i ⇒ π A , ren i = δ A i δ W .
For homogeneous electric backgrounds this becomes a relation between ρ \rho ρ and μ \mu μ .
Such mixed conditions correspond to deformations in the dual CFT involving the conserved current J i J^i J i (and, in d = 3 d=3 d = 3 , are closely tied to S L ( 2 , Z ) SL(2,\mathbb{Z}) S L ( 2 , Z ) operations when Chern–Simons terms are included).
Compared to Einstein–Maxwell, the only structural change is that the conserved flux is the dilaton-dressed one:
π A i ∝ Z ( ϕ ) n μ F μ i , Z ( ϕ ) = e − α ϕ . \pi_A^{\,i}\propto Z(\phi)\,n_\mu F^{\mu i},
\qquad Z(\phi)=e^{-\alpha\phi}. π A i ∝ Z ( ϕ ) n μ F μ i , Z ( ϕ ) = e − α ϕ .
Equivalently, the Maxwell equation is conservation of the “electric displacement” Z ( ϕ ) F r τ Z(\phi)F^{r\tau} Z ( ϕ ) F r τ . This means:
the holographic charge/current is proportional to Z ( ϕ ) Z(\phi) Z ( ϕ ) evaluated in the solution, and
changing the boundary condition for ϕ \phi ϕ (standard/alternative/mixed quantization) can indirectly affect the gauge-sector thermodynamics through the profile of Z ( ϕ ) Z(\phi) Z ( ϕ ) .
(Scalar boundary terms and counterterms are handled exactly as in the Einstein–scalar discussion.)