Skip to content

Einstein–Maxwell–Dilaton (EMD) and Thermodynamic Ensembles

A frequently used generalization of the Einstein–scalar system is the Einstein–Maxwell–dilaton (EMD) model

SEMD=Md4xg(R14eαϕFμνFμν12(ϕ)2V(ϕ)),Fμν=μAννAμ.S_{\rm EMD} =\int_M d^4x\,\sqrt{-g}\left( R-\frac14\,e^{-\alpha\phi}F_{\mu\nu}F^{\mu\nu} -\frac12(\partial\phi)^2 - V(\phi) \right), \qquad F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu.

To have a well-posed and finite variational problem in asymptotically AdS4_4, one works with

Stot=SEMD+SGHY+Sct+Sbdy(A),SGHY=18πGMd3xγK,S_{\rm tot}=S_{\rm EMD}+S_{\rm GHY}+S_{\rm ct}+S_{\rm bdy}^{(A)}, \qquad S_{\rm GHY}=\frac{1}{8\pi G}\int_{\partial M} d^3x\,\sqrt{-\gamma}\,K,

and chooses the Maxwell boundary term Sbdy(A)S_{\rm bdy}^{(A)} according to the thermodynamic ensemble.

1. Maxwell variation and the conserved radial flux

Section titled “1. Maxwell variation and the conserved radial flux”

Introduce the dilaton-dependent gauge coupling

Z(ϕ)eαϕ.Z(\phi)\equiv e^{-\alpha\phi}.

The Maxwell part of the action is

SA=14Md4xgZ(ϕ)FμνFμν.S_A=-\frac14\int_M d^4x\,\sqrt{-g}\,Z(\phi)\,F_{\mu\nu}F^{\mu\nu}.

Varying AνA_\nu and integrating by parts gives

δSA=Md4xg[μ(ZFμν)]δAν+Md3xγZ(ϕ)nμFμiδAi.\delta S_A =\int_M d^4x\,\sqrt{-g}\,\big[\nabla_\mu(ZF^{\mu\nu})\big]\delta A_\nu +\int_{\partial M} d^3x\,\sqrt{-\gamma}\,Z(\phi)\,n_\mu F^{\mu i}\,\delta A_i.

So the Maxwell equation is

μ ⁣(Z(ϕ)Fμν)=0,\nabla_\mu\!\left(Z(\phi)F^{\mu\nu}\right)=0,

and the on-shell boundary variation is

δSAEOM=Md3xπAiδAi,πAiγZ(ϕ)nμFμi.\delta S_A\Big|_{\rm EOM}=\int_{\partial M} d^3x\,\pi_A^{\,i}\,\delta A_i, \qquad \pi_A^{\,i}\equiv \sqrt{-\gamma}\,Z(\phi)\,n_\mu F^{\mu i}.

For static, homogeneous charged backgrounds (typical in RG-flow thermodynamics), only the time component matters. In Lorentzian signature one often uses At(r)A_t(r); in Euclidean signature the thermal circle is parameterized by ττ+β\tau\sim\tau+\beta and the relevant boundary datum is AτA_\tau.

A key simplification of EMD is that the radial electric flux is conserved:

r(πAτ)=0(for homogeneous solutions),\partial_r\big(\pi_A^{\,\tau}\big)=0 \qquad(\text{for homogeneous solutions}),

so πAτ\pi_A^{\,\tau} can be evaluated at the horizon or at the boundary and gives the same result.

2. Grand canonical ensemble (Dirichlet on AτA_\tau): fixed chemical potential μ\mu

Section titled “2. Grand canonical ensemble (Dirichlet on AτA_\tauAτ​): fixed chemical potential μ\muμ”

The grand canonical ensemble fixes the chemical potential:

ZGC=Trexp ⁣[β(HμQ)],Ω(T,μ)=1βlogZGC.Z_{\rm GC}=\mathrm{Tr}\,\exp\!\big[-\beta(H-\mu Q)\big],\qquad \Omega(T,\mu) = -\frac{1}{\beta}\log Z_{\rm GC}.

Holographically, this corresponds to Dirichlet boundary conditions on the Euclidean time component of the gauge field:

AτM=μδAτM=0.A_\tau\big|_{\partial M}=\mu \quad\Longleftrightarrow\quad \delta A_\tau\big|_{\partial M}=0.

Then the Maxwell boundary variation vanishes automatically because δAτ=0\delta A_\tau=0.

More physically, after holographic renormalization the (Euclidean) on-shell action satisfies

IE(Dir)on-shell=βΩ(T,μ),I_E^{\rm (Dir)}\Big|_{\rm on\text{-}shell}=\beta\,\Omega(T,\mu),

and its variation reproduces the thermodynamic relation

δIE(Dir)on-shell=βQδμdΩ=SdTQdμ.\delta I_E^{\rm (Dir)}\Big|_{\rm on\text{-}shell} = -\beta\,Q\,\delta\mu \qquad\Longleftrightarrow\qquad d\Omega = -S\,dT - Q\,d\mu.

3. Canonical ensemble (Neumann on AτA_\tau): fixed charge QQ (or density ρ\rho)

Section titled “3. Canonical ensemble (Neumann on AτA_\tauAτ​): fixed charge QQQ (or density ρ\rhoρ)”

The canonical ensemble fixes the charge:

ZC(Q)=TrQexp(βH),F(T,Q)=1βlogZC(Q).Z_{\rm C}(Q)=\mathrm{Tr}_{Q}\,\exp(-\beta H),\qquad F(T,Q)=-\frac{1}{\beta}\log Z_{\rm C}(Q).

Thermodynamics gives the Legendre transform

F(T,Q)=Ω(T,μ)+μQ,dF=SdT+μdQ.F(T,Q)=\Omega(T,\mu)+\mu Q, \qquad dF=-S\,dT+\mu\,dQ.

Holographically, fixing QQ means fixing the (renormalized) radial electric flux, i.e. a Neumann-type condition:

δπA,renτ=0(equivalently δρ=0).\delta \pi_{A,\rm ren}^{\,\tau}=0 \quad (\text{equivalently } \delta\rho=0).

To make the variational principle compatible with this, we add a Legendre boundary term for the gauge field,

ILeg(A)Md3xAτπAτ  =  Md3xμρ(using ρ=πAτ as above).I_{\rm Leg}^{(A)} \equiv -\int_{\partial M} d^3x\,A_\tau\,\pi_A^{\,\tau} \;=\; \int_{\partial M} d^3x\,\mu\,\rho \quad(\text{using }\rho=-\pi_A^{\,\tau} \text{ as above}).

Then the total boundary variation becomes

δ(IE(Dir)+ILeg(A))EOM=+d3xμδρ,\delta\big(I_E^{\rm (Dir)}+I_{\rm Leg}^{(A)}\big)\Big|_{\rm EOM} = +\int d^3x\,\mu\,\delta\rho,

so it vanishes for fixed ρ\rho (canonical ensemble).

On-shell, the Legendre term implements the expected thermodynamic transformation:

IE(Neu)on-shell=IE(Dir)on-shell+βμQF=Ω+μQ.I_E^{\rm (Neu)}\Big|_{\rm on\text{-}shell} = I_E^{\rm (Dir)}\Big|_{\rm on\text{-}shell} + \beta\,\mu Q \qquad\Longleftrightarrow\qquad F=\Omega+\mu Q.

4. Mixed boundary conditions (intermediate ensembles / current deformations)

Section titled “4. Mixed boundary conditions (intermediate ensembles / current deformations)”

More generally, one can impose a mixed (Robin) condition relating ρ\rho and μ\mu, which is the gauge-field analogue of multi-trace scalar boundary conditions. Add a finite boundary functional W[A]W[A] and obtain

δ(Iren+W)EOM=d3x(πA,reniδWδAi)δAiπA,reni=δWδAi.\delta(I_{\rm ren}+W)\Big|_{\rm EOM} =\int d^3x\,\Big(\pi_{A,\rm ren}^{\,i}-\frac{\delta W}{\delta A_i}\Big)\delta A_i \qquad\Rightarrow\qquad \pi_{A,\rm ren}^{\,i}=\frac{\delta W}{\delta A_i}.

For homogeneous electric backgrounds this becomes a relation between ρ\rho and μ\mu. Such mixed conditions correspond to deformations in the dual CFT involving the conserved current JiJ^i (and, in d=3d=3, are closely tied to SL(2,Z)SL(2,\mathbb{Z}) operations when Chern–Simons terms are included).

Compared to Einstein–Maxwell, the only structural change is that the conserved flux is the dilaton-dressed one:

πAiZ(ϕ)nμFμi,Z(ϕ)=eαϕ.\pi_A^{\,i}\propto Z(\phi)\,n_\mu F^{\mu i}, \qquad Z(\phi)=e^{-\alpha\phi}.

Equivalently, the Maxwell equation is conservation of the “electric displacement” Z(ϕ)FrτZ(\phi)F^{r\tau}. This means:

  • the holographic charge/current is proportional to Z(ϕ)Z(\phi) evaluated in the solution, and
  • changing the boundary condition for ϕ\phi (standard/alternative/mixed quantization) can indirectly affect the gauge-sector thermodynamics through the profile of Z(ϕ)Z(\phi).

(Scalar boundary terms and counterterms are handled exactly as in the Einstein–scalar discussion.)