Skip to content

Stationary solutions in AdS

by renphysics (contact: renphysics@adscft.org)

Rμν12gμνR+Λgμν=8πGTμν R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R+\Lambda g_{\mu\nu}=8\pi GT_{\mu\nu}
AspectNumerical relativity for astrophysicsNumerical relativity for AdS
Physical motivationSimulate extreme gravitational events such as black holes or neutron stars merging. To understand general relativity including gravitation wavesBetter understand strongly coupled systems. By simulating gravitational dynamics in AdS, one can model analogous processes like thermalization in the dual quantum system, probing strongly coupled matter far from equilibrium
Global structureGlobally hyperbolic; Cauchy data on spatial sliceNot globally hyperbolic; must supply boundary data on the timelike AdS boundary (where the CFT lives)
Stationary solutionsLimited due to uniqueness theorems
- topology: spherical
- rigidity
- no hair theorem
Rich landscape: black droplets, black funnels
Fundations1990s2009-2013
ExamplesBinary black holes mergersblack droplets, black funnels, black
Gauge choicesBSSN, generalized harmonic, etc.DeTurck gauge
Chesler-Yaffe gauge
Bondi-Sachs gauge

Comercial coftware: Comsol. Standard equations, highly complex boundaries. Finite element method NR for AdS: non-Standard equations, simple boundaries, pseudospectral method

a strongly coupled quantum field theory can be mapped to a classical gravity system in a higher-dimensional AdS universe.

A basic classification of solutions is by their symmetries, including the group and the orbit.

境自远尘皆入咏,物含妙理总堪寻。 (Far beyond the world’s dust, the cosmic vista itself becomes poetry; within each thing lies a subtle principle, one that merits our profound inquiry.)

形骸已与流年老,诗句犹争造化功。 (My body creaks under the weight of passing years, My poems aim still to rival the perfections of nature. By Lu You, translated by C.N Yang.)

An analytic solution is like a Chinese traditional poem, and a numerical solution is like a modern poem.

Besides the symmetry, there are other ways to classify spacetimes.

  • Petrov classification
  • Ricci tensor
  • Energy-momentum tensor

In AdS

ds2=f(r)dt2+1f(r)dr2+r2dΣ2,k2ds^2=-f(r)dt^2+\frac{1}{f(r)}dr^2+r^2d\Sigma_{2,k}^2 f(r)=k2MrΛ3r2f(r)=k-\frac{2M}{r}-\frac{\Lambda}{3}r^2

If Λ=0\Lambda=0, there can be black holes with different topologies in D5D\ge 5. For example, S3S^3 and S1×S2S^1\times S^2. A remark about the hyperbolic black hole. At high temperature, the causal structure is similar to the Schwarzschild-AdS balck hole, while at low temperature, the causal structure is similar to the RN-AdS black hole. At the spacetime is maximally symmetric, and it is called the Rindler-AdS coordinates of the AdS.

Elliptic

(2+m2)u=f (\nabla^2+m^2)u=f

Hyperbolic

(t22)u=f (\partial_t^2-\nabla^2)u=f

Parabolic

(t2)u=f (\partial_t-\nabla^2)u=f x=(1.,0.900969,0.62349,0.222521,0.222521,0.62349,0.900969,1.)Tx=(-1.,-0.900969,-0.62349,-0.222521,0.222521,0.62349,0.900969,1.)^T ddx=(16.520.19575.311942.572421.635961.231911.05210.55.048922.392953.603881.473950.8900840.6559710.5549580.2630241.327993.603880.5100032.493961.182020.8019380.6559710.3079790.6431041.473952.493960.1170572.246981.182020.8900840.4089910.4089910.8900841.182022.246980.1170572.493961.473950.6431040.3079790.6559710.8019381.182022.493960.5100033.603881.327990.2630240.5549580.6559710.8900841.473953.603882.392955.048920.51.05211.231911.635962.572425.3119420.195716.5)\frac{d}{dx}= \left( \begin{array}{cccccccc} -16.5 & 20.1957 & -5.31194 & 2.57242 & -1.63596 & 1.23191 & -1.0521 & 0.5 \\ -5.04892 & 2.39295 & 3.60388 & -1.47395 & 0.890084 & -0.655971 & 0.554958 & -0.263024 \\ 1.32799 & -3.60388 & 0.510003 & 2.49396 & -1.18202 & 0.801938 & -0.655971 & 0.307979 \\ -0.643104 & 1.47395 & -2.49396 & 0.117057 & 2.24698 & -1.18202 & 0.890084 & -0.408991 \\ 0.408991 & -0.890084 & 1.18202 & -2.24698 & -0.117057 & 2.49396 & -1.47395 & 0.643104 \\ -0.307979 & 0.655971 & -0.801938 & 1.18202 & -2.49396 & -0.510003 & 3.60388 & -1.32799 \\ 0.263024 & -0.554958 & 0.655971 & -0.890084 & 1.47395 & -3.60388 & -2.39295 & 5.04892 \\ -0.5 & 1.0521 & -1.23191 & 1.63596 & -2.57242 & 5.31194 & -20.1957 & 16.5 \\ \end{array} \right) Lu=fu=L1fLu=f\quad \Rightarrow\quad u=L^{-1}f

Metric ansatz:

ds2=L2xy(1+x)2{x(1y)(1+xy)Tdt2+x(1+x)2Ady24y(1y)(1+xy)+r02B[dx+x(1x)2Fdy]2x(1x)4+r02S(1x)2dΩ22}ds^2=\frac{L^2}{x\,y(1+x)^2}\bigg\{-x(1-y)(1+x\,y)Tdt^2+\frac{x(1+x)^2Ady^2}{4y(1-y)(1+x\,y)}+\frac{r_0^2B[dx+x(1-x)^2Fdy]^2}{x(1-x)^4}+\frac{r_0^2S}{(1-x)^2}d\Omega_{2}^2\bigg\}

The reference metric given by T=A=B=S=1T=A=B=S=1 and F=0F=0.

{\hfill [J.E. Santos, B. Way, 1208.6291]}

{\bf Planar black hole} at x=1x=1. Boundary conditions are T=A=B=S=1T=A=B=S=1 and F=0F=0.

ds2=L2y[14(1y2)dt2+dy24y(1y2)+r02dx24(1x)4+r024(1x)2dΩ22] ds^2=\frac{L^2}{y}\left[-\frac{1}{4}(1-y^2)dt^2+\frac{dy^2}{4y(1-y^2)}+\frac{r_0^2dx^2}{4 (1-x)^4}+\frac{r_0^2}{4(1-x)^2}d\Omega_2^2\right]

After coordinate transformation t=2τt = 2 \tau , x=1r0/2Rx = 1-r_0/2R, y=z2 y= z^2:

ds2=L2z2[(1z4)dτ2+dz21z4+dR2+R2dΩ22] ds^2=\frac{L^2}{z^2}\left[-(1-z^4)d\tau^2+\frac{dz^2}{1-z^4}+dR^2+R^2d\Omega_2^2\right]

{\bf Conformal boundary} at y=0y=0.

ds2=L2y[dy24y+1x(1+x)2  ds2], ds^2=\frac{L^2}{y}\left[\frac{dy^2}{4 y}+\frac{1}{x(1+x)^2}\;ds_\partial^2\right], ds2=xdt2+r02dx2x(1x)4+r02(1x)2dΩ22 ds_\partial^2=-x\,dt^2+\frac{r_0^2dx^2}{x(1-x)^4}+\frac{r_0^2}{(1-x)^2}d\Omega_2^2

After x=1r0/rx= 1-r_0/r, it becomes the Schwarzschild metric:

ds2=(1r0r)dt2+dr21r0r+r2dΩ22  . ds_\partial^2=-\left(1-\frac{r_0}{r}\right)dt^2+\frac{dr^2}{1-\frac{r_0}{r}}+r^2d\Omega_2^2\;.

{\bf Horizon} at y=1y=1.

Expanding the equations of motion about the horizon will give the condition T=AT=A and other conditions on yAy=1\partial_yA|_{y=1}, yBy=1\partial_yB|_{y=1}, yFy=1\partial_yF|_{y=1}, and ySy=1\partial_yS|_{y=1}.

{\bf Hyperbolic black hole} at x=0x=0.

ds2=L2y[(1y)dt2+dy24y(1y)+dx24x2+14xdΩ22] ds^2=\frac{L^2}{y}\left[-(1-y)dt^2+\frac{dy^2}{4y(1-y)}+\frac{dx^2}{4x^2}+\frac{1}{4x}d\Omega_2^2\right]

After coordinate transformation y=z2y=z^2 and x=exp(2η)x=\exp(-2\eta),

ds2=L2z2[(1z2)dt2+dz21z2+dη2+e2η4dΩ22] ds^2=\frac{L^2}{z^2}\left[-(1-z^2)dt^2+\frac{dz^2}{1-z^2}+d\eta^2+\frac{e^{2\eta}}{4}d\Omega_2^2\right]

Zero energy hyperbolic black hole:

dsH2=L2z2[(1z2)dt2+dz21z2+dη2+sinh2ηdΩd32] ds^2_{\mathbb{H}}=\frac{L^2}{z^2}\left[-(1-z^2)dt^2+\frac{dz^2}{1-z^2}+d\eta^2+\sinh^2\eta\, d\Omega_{d-3}^2\right]

A stationary solution is a solution to a well-posed boundary value problem. (Dias-Santos-Way 1510.02804)

There is an induced metric and extrinsic curvature (KμνK_{\mu\nu}) at the boundary.

mixed condition or Neumann condition for simplicity.

  • Pseudospectral method
  • Newton’s method

The package GRSpectral implements the above method.

[1]