These notes combine a self-contained overview of the Hawking–Page (HP) transition with a step-by-step derivation of the renormalized on-shell Euclidean action in global AdS.
Black holes (1916) → black-hole thermodynamics (1973–1976).
Area–entropy S = A / 4 G S=A/4G S = A /4 G , Hawking temperature T = κ / 2 π T=\kappa/2\pi T = κ /2 π , and the four laws turn black holes into thermodynamic systems.
Hawking–Page (1983).
In global AdS, equilibrium between radiation and a black hole is possible; comparing Euclidean actions reveals a first-order transition between thermal AdS and a spherical AdS–Schwarzschild black hole .
AdS/CFT (1997–1998).
In the dual CFT on S d − 1 S^{d-1} S d − 1 , the HP transition is the confinement/deconfinement transition at large N N N (Witten 1998).
For a static, spherically symmetric spacetime
d s 2 = − f ( r ) d t 2 + d r 2 f ( r ) + r 2 d Ω d − 1 2 , ds^2=-f(r)\,dt^2+\frac{dr^2}{f(r)}+r^2 d\Omega_{d-1}^2, d s 2 = − f ( r ) d t 2 + f ( r ) d r 2 + r 2 d Ω d − 1 2 ,
Wick rotate t → − i τ t\to -i\tau t → − i τ to obtain
d s 2 = f ( r ) d τ 2 + d r 2 f ( r ) + r 2 d Ω d − 1 2 . ds^2=f(r)\,d\tau^2+\frac{dr^2}{f(r)}+r^2 d\Omega_{d-1}^2. d s 2 = f ( r ) d τ 2 + f ( r ) d r 2 + r 2 d Ω d − 1 2 .
Near the horizon r = r + r=r_+ r = r + with f ( r + ) = 0 f(r_+)=0 f ( r + ) = 0 , expand f ( r ) ≈ f ′ ( r + ) ( r − r + ) f(r)\approx f'(r_+)(r-r_+) f ( r ) ≈ f ′ ( r + ) ( r − r + ) . The ( τ , r ) (\tau,r) ( τ , r ) sector becomes
d s 2 ≈ f ′ ( r + ) ( r − r + ) d τ 2 + d r 2 f ′ ( r + ) ( r − r + ) . ds^2 \approx f'(r_+)(r-r_+)\,d\tau^2+\frac{dr^2}{f'(r_+)(r-r_+)}. d s 2 ≈ f ′ ( r + ) ( r − r + ) d τ 2 + f ′ ( r + ) ( r − r + ) d r 2 .
Define ρ ≡ 2 r − r + f ′ ( r + ) \rho\equiv \tfrac{2\sqrt{r-r_+}}{\sqrt{f'(r_+)}} ρ ≡ f ′ ( r + ) 2 r − r + , so
d s 2 ≈ d ρ 2 + ρ 2 ( f ′ ( r + ) 2 d τ ) 2 . ds^2\approx d\rho^2+\rho^2\Big(\tfrac{f'(r_+)}{2}\,d\tau\Big)^2. d s 2 ≈ d ρ 2 + ρ 2 ( 2 f ′ ( r + ) d τ ) 2 .
Smoothness at ρ = 0 \rho=0 ρ = 0 requires τ ∼ τ + β \tau\sim\tau+\beta τ ∼ τ + β with period
β = 4 π f ′ ( r + ) , T = β − 1 = f ′ ( r + ) 4 π ≡ κ 2 π . \beta=\frac{4\pi}{f'(r_+)},\qquad T=\beta^{-1}=\frac{f'(r_+)}{4\pi}\equiv \frac{\kappa}{2\pi}. β = f ′ ( r + ) 4 π , T = β − 1 = 4 π f ′ ( r + ) ≡ 2 π κ .
With f ( r ) = 1 − r 0 r f(r)=1-\tfrac{r_0}{r} f ( r ) = 1 − r r 0 (r 0 = 2 G M r_0=2GM r 0 = 2 GM ):
T = 1 4 π r 0 = 1 8 π G M , S = A 4 G = π r 0 2 G . T=\frac{1}{4\pi r_0}=\frac{1}{8\pi GM},\qquad
S=\frac{A}{4G}=\frac{\pi r_0^2}{G}. T = 4 π r 0 1 = 8 π GM 1 , S = 4 G A = G π r 0 2 .
Using M = r 0 2 G M=\tfrac{r_0}{2G} M = 2 G r 0 , the first law d M = T d S dM=T\,dS d M = T d S holds. In the canonical ensemble, F = M − T S F=M-TS F = M − TS .
Path-integral viewpoint.
Z = ∫ D g e i S [ g ] → t → − i τ ∫ D g e − S E [ g ] ≃ e − S E [ g ∗ ] = e − β F , Z=\int\!\mathcal Dg\,e^{iS[g]}\xrightarrow{t\to -i\tau}\int\!\mathcal Dg\,e^{-S_E[g]}
\simeq e^{-S_E[g_\ast]}=e^{-\beta F}, Z = ∫ D g e i S [ g ] t → − i τ ∫ D g e − S E [ g ] ≃ e − S E [ g ∗ ] = e − βF ,
where the last step is the semiclassical saddle-point approximation (large parameter ∼ 1 / G \sim 1/G ∼ 1/ G ).
Aside (Gaussian saddle). If I N = ∫ d x e N f ( x ) I_N=\int dx\,e^{Nf(x)} I N = ∫ d x e N f ( x ) with N ≫ 1 N\gg1 N ≫ 1 and f ′ ( x ∗ ) = 0 , f ′ ′ ( x ∗ ) < 0 f'(x_\ast)=0,f''(x_\ast)<0 f ′ ( x ∗ ) = 0 , f ′′ ( x ∗ ) < 0 , then
I N ≈ 2 π N ∣ f ′ ′ ( x ∗ ) ∣ e N f ( x ∗ ) . I_N\approx \sqrt{\frac{2\pi}{N|f''(x_\ast)|}}\,e^{Nf(x_\ast)}. I N ≈ N ∣ f ′′ ( x ∗ ) ∣ 2 π e N f ( x ∗ ) .
Work in global AdS5 _5 5 with radius L L L ; the Euclidean boundary is S β 1 × S 3 S^1_\beta\times S^3 S β 1 × S 3 with fixed proper thermal circle length β \beta β . Asymptotically,
d s 2 → r 2 L 2 d τ 2 + L 2 r 2 d r 2 + r 2 d Ω 3 2 , τ ∼ τ + β . ds^2\to \frac{r^2}{L^2}d\tau^2+\frac{L^2}{r^2}dr^2+r^2 d\Omega_3^2,\qquad \tau\sim\tau+\beta. d s 2 → L 2 r 2 d τ 2 + r 2 L 2 d r 2 + r 2 d Ω 3 2 , τ ∼ τ + β .
Saddles with these boundary data:
Thermal AdS: f ( r ) = 1 + r 2 L 2 f(r)=1+\tfrac{r^2}{L^2} f ( r ) = 1 + L 2 r 2 , no horizon.
Small AdS black hole: unstable.
Large AdS black hole: stable.
Both black holes share
d s 2 = f ( r ) d τ 2 + d r 2 f ( r ) + r 2 d Ω 3 2 , f ( r ) = 1 + r 2 L 2 − μ r 2 , ds^2=f(r)\,d\tau^2+\frac{dr^2}{f(r)}+r^2 d\Omega_3^2,\qquad
f(r)=1+\frac{r^2}{L^2}-\frac{\mu}{r^2}, d s 2 = f ( r ) d τ 2 + f ( r ) d r 2 + r 2 d Ω 3 2 , f ( r ) = 1 + L 2 r 2 − r 2 μ ,
with horizon at r = r + r=r_+ r = r + and
μ = r + 2 ( 1 + r + 2 L 2 ) . \mu=r_+^2\Big(1+\frac{r_+^2}{L^2}\Big). μ = r + 2 ( 1 + L 2 r + 2 ) .
Temperature and branches.
T ( r + ) = 1 2 π r + ( 1 + 2 r + 2 L 2 ) , β ( r + ) = 2 π L 2 r + L 2 + 2 r + 2 . T(r_+)=\frac{1}{2\pi r_+}\Big(1+2\frac{r_+^2}{L^2}\Big),\qquad
\beta(r_+)=\frac{2\pi L^2 r_+}{L^2+2r_+^2}. T ( r + ) = 2 π r + 1 ( 1 + 2 L 2 r + 2 ) , β ( r + ) = L 2 + 2 r + 2 2 π L 2 r + .
T T T has a minimum at r x = L / 2 r_x=L/\sqrt{2} r x = L / 2 :
T min = 2 π L . T_{\min}=\frac{\sqrt{2}}{\pi L}. T m i n = π L 2 .
For T > T min T>T_{\min} T > T m i n both a small (unstable) and a large (stable) black hole exist at the same T T T . The horizon area A = 2 π 2 r + 3 A=2\pi^2 r_+^3 A = 2 π 2 r + 3 yields
S B H = A 4 G 5 = π 2 r + 3 2 G 5 . S_{\rm BH}=\frac{A}{4G_5}=\frac{\pi^2 r_+^3}{2G_5}. S BH = 4 G 5 A = 2 G 5 π 2 r + 3 .
We evaluate
Z g r a v ( β ) = ∫ D g e − I E [ g ] ≃ ∑ i e − I E ( i ) ( β ) , Z_{\rm grav}(\beta)=\int\mathcal D g\,e^{-I_E[g]}\simeq \sum_i e^{-I_E^{(i)}(\beta)}, Z grav ( β ) = ∫ D g e − I E [ g ] ≃ i ∑ e − I E ( i ) ( β ) ,
with the renormalized Euclidean action
I E [ g ] = − 1 16 π G 5 ∫ M d 5 x g ( R + 12 L 2 ) − 1 8 π G 5 ∫ ∂ M d 4 x γ K + I c t [ γ ] . I_E[g]=-\frac{1}{16\pi G_5}\!\int_{M}\! d^5x \sqrt{g}\,(R+\tfrac{12}{L^2})
-\frac{1}{8\pi G_5}\!\int_{\partial M}\! d^4x \sqrt{\gamma}\,K
+I_{\rm ct}[\gamma]. I E [ g ] = − 16 π G 5 1 ∫ M d 5 x g ( R + L 2 12 ) − 8 π G 5 1 ∫ ∂ M d 4 x γ K + I ct [ γ ] .
For a 4D boundary,
I c t [ γ ] = 1 8 π G 5 ∫ ∂ M d 4 x γ ( 3 L + L 4 R [ γ ] ) . I_{\rm ct}[\gamma]=\frac{1}{8\pi G_5}\!\int_{\partial M}\! d^4x \sqrt{\gamma}\left(\frac{3}{L}+\frac{L}{4}R[\gamma]\right). I ct [ γ ] = 8 π G 5 1 ∫ ∂ M d 4 x γ ( L 3 + 4 L R [ γ ] ) .
Below we compute I E I_E I E for the spherical AdS–Schwarzschild saddle at a cutoff r = R r=R r = R and then send R → ∞ R\to\infty R → ∞ . Denote Ω 3 = V o l ( S 3 ) = 2 π 2 \Omega_3=\mathrm{Vol}(S^3)=2\pi^2 Ω 3 = Vol ( S 3 ) = 2 π 2 so that Ω 3 / ( 16 π ) = π / 8 \Omega_3/(16\pi)=\pi/8 Ω 3 / ( 16 π ) = π /8 .
On shell R = − 20 / L 2 R=-20/L^2 R = − 20/ L 2 , hence R + 12 / L 2 = − 8 / L 2 R+12/L^2=-8/L^2 R + 12/ L 2 = − 8/ L 2 . With g = r 3 \sqrt{g}=r^3 g = r 3 ,
I b u l k ( b h ) ( R ) = − 1 16 π G 5 ∫ d 5 x g ( − 8 L 2 ) = β Ω 3 8 π G 5 L 2 ∫ r + R r 3 d r = β 4 G 5 L 2 π ( R 4 − r + 4 ) . \begin{aligned}
I_{\rm bulk}^{\rm (bh)}(R)
&=-\frac{1}{16\pi G_5}\int d^5x\sqrt{g}\left(-\frac{8}{L^2}\right)
=\frac{\beta\,\Omega_3}{8\pi G_5 L^2}\int_{r_+}^R r^3\,dr\\
&=\frac{\beta}{4G_5L^2}\,\pi\,(R^4-r_+^4).
\end{aligned} I bulk ( bh ) ( R ) = − 16 π G 5 1 ∫ d 5 x g ( − L 2 8 ) = 8 π G 5 L 2 β Ω 3 ∫ r + R r 3 d r = 4 G 5 L 2 β π ( R 4 − r + 4 ) .
Writing d s 2 = N 2 d r 2 + γ i j d x i d x j ds^2=N^2dr^2+\gamma_{ij}dx^i dx^j d s 2 = N 2 d r 2 + γ ij d x i d x j with N 2 = 1 / f N^2=1/f N 2 = 1/ f and γ i j d x i d x j = f d τ 2 + r 2 d Ω 3 2 \gamma_{ij}dx^i dx^j=f\,d\tau^2+r^2 d\Omega_3^2 γ ij d x i d x j = f d τ 2 + r 2 d Ω 3 2 , the extrinsic curvature is
K = f ( f ′ 2 f + 3 r ) , γ = f r 3 . K=\sqrt{f}\Big(\frac{f'}{2f}+\frac{3}{r}\Big),\qquad \sqrt{\gamma}=\sqrt{f}\,r^3. K = f ( 2 f f ′ + r 3 ) , γ = f r 3 .
Therefore
I G H ( b h ) ( R ) = − β Ω 3 8 π G 5 R 3 f f ( f ′ 2 f + 3 R ) = − β π 4 G 5 ( R 3 f ′ 2 + 3 R 2 f ) = − β π 4 G 5 ( 4 R 4 L 2 + 3 R 2 − 2 μ ) , \begin{aligned}
I_{\rm GH}^{\rm (bh)}(R)
&=-\frac{\beta\,\Omega_3}{8\pi G_5}\,R^3\sqrt{f}\,\sqrt{f}\Big(\frac{f'}{2f}+\frac{3}{R}\Big)\\
&=-\frac{\beta\,\pi}{4G_5}\Big(\frac{R^3 f'}{2}+3R^2 f\Big)\\
&=-\frac{\beta\,\pi}{4G_5}\Big(\frac{4R^4}{L^2}+3R^2-2\mu\Big),
\end{aligned} I GH ( bh ) ( R ) = − 8 π G 5 β Ω 3 R 3 f f ( 2 f f ′ + R 3 ) = − 4 G 5 β π ( 2 R 3 f ′ + 3 R 2 f ) = − 4 G 5 β π ( L 2 4 R 4 + 3 R 2 − 2 μ ) ,
using f ( R ) = 1 + R 2 L 2 − μ R 2 f(R)=1+\frac{R^2}{L^2}-\frac{\mu}{R^2} f ( R ) = 1 + L 2 R 2 − R 2 μ and f ′ ( R ) = 2 R L 2 + 2 μ R 3 f'(R)=\frac{2R}{L^2}+\frac{2\mu}{R^3} f ′ ( R ) = L 2 2 R + R 3 2 μ .
For γ i j = d i a g ( f ( R ) , R 2 g S 3 ) \gamma_{ij}=\mathrm{diag}(f(R),R^2 g_{S^3}) γ ij = diag ( f ( R ) , R 2 g S 3 ) , the intrinsic scalar curvature is R [ γ ] = 6 / R 2 R[\gamma]=6/R^2 R [ γ ] = 6/ R 2 . Hence
I c t ( b h ) ( R ) = β Ω 3 8 π G 5 R 3 f ( 3 L + 3 L 2 R 2 ) = β π 4 G 5 ( 3 R 3 f L + 3 L 2 R f ) . I_{\rm ct}^{\rm (bh)}(R)=\frac{\beta\,\Omega_3}{8\pi G_5}\,R^3\sqrt{f}\left(\frac{3}{L}+\frac{3L}{2R^2}\right)
=\frac{\beta\,\pi}{4G_5}\!\left(\frac{3R^3\sqrt{f}}{L}+\frac{3L}{2}R\sqrt{f}\right). I ct ( bh ) ( R ) = 8 π G 5 β Ω 3 R 3 f ( L 3 + 2 R 2 3 L ) = 4 G 5 β π ( L 3 R 3 f + 2 3 L R f ) .
At large R R R ,
f ( R ) = R L + L 2 R − L 3 8 R 3 − μ L 2 R 3 + ⋯ , \sqrt{f(R)}=\frac{R}{L}+\frac{L}{2R}-\frac{L^3}{8R^3}-\frac{\mu L}{2R^3}+\cdots, f ( R ) = L R + 2 R L − 8 R 3 L 3 − 2 R 3 μL + ⋯ ,
so
I c t ( b h ) ( R ) = β π 4 G 5 ( 3 R 4 L 2 + 3 R 2 + 3 8 L 2 − 3 2 μ + ⋯ ) . I_{\rm ct}^{\rm (bh)}(R)=\frac{\beta\,\pi}{4G_5}\Big(\frac{3R^4}{L^2}+3R^2+\frac{3}{8}L^2-\frac{3}{2}\mu+\cdots\Big). I ct ( bh ) ( R ) = 4 G 5 β π ( L 2 3 R 4 + 3 R 2 + 8 3 L 2 − 2 3 μ + ⋯ ) .
Summing I b u l k + I G H + I c t I_{\rm bulk}+I_{\rm GH}+I_{\rm ct} I bulk + I GH + I ct , the R 4 R^4 R 4 and R 2 R^2 R 2 divergences cancel. The finite remainder is
I E ( b h ) = β π 8 G 5 L 2 ( r + 2 L 2 − r + 4 + 3 4 L 4 ) , I_E^{\rm (bh)}=\frac{\beta\,\pi}{8G_5L^2}\left(r_+^2L^2-r_+^4+\frac{3}{4}L^4\right), I E ( bh ) = 8 G 5 L 2 β π ( r + 2 L 2 − r + 4 + 4 3 L 4 ) ,
using μ = r + 2 ( 1 + r + 2 / L 2 ) \mu=r_+^2(1+r_+^2/L^2) μ = r + 2 ( 1 + r + 2 / L 2 ) .
Repeat with f 0 ( r ) = 1 + r 2 L 2 f_0(r)=1+\frac{r^2}{L^2} f 0 ( r ) = 1 + L 2 r 2 (integrate from r = 0 r=0 r = 0 ). One obtains
I E ( t h ) = β π 8 G 5 L 2 ( 3 4 L 4 ) . I_E^{\rm (th)}=\frac{\beta\,\pi}{8G_5L^2}\left(\frac{3}{4}L^4\right). I E ( th ) = 8 G 5 L 2 β π ( 4 3 L 4 ) .
A background-subtraction derivation yields the same difference and is equivalent after matching the proper length of the thermal circle at the cutoff.
With F = I E / β F=I_E/\beta F = I E / β , the scheme-independent difference is
Δ F ≡ F b h − F t h = π 8 G 5 L 2 ( r + 2 L 2 − r + 4 ) = π r + 2 8 G 5 ( 1 − r + 2 L 2 ) . \Delta F \equiv F_{\rm bh}-F_{\rm th}
=\frac{\pi}{8G_5L^2}\Big(r_+^2L^2-r_+^4\Big)
=\frac{\pi r_+^2}{8G_5}\Big(1-\frac{r_+^2}{L^2}\Big). Δ F ≡ F bh − F th = 8 G 5 L 2 π ( r + 2 L 2 − r + 4 ) = 8 G 5 π r + 2 ( 1 − L 2 r + 2 ) .
Thus the dominant saddle changes at r + = L r_+=L r + = L . Using T ( r + ) T(r_+) T ( r + ) from above,
T H P = 3 2 π L , β H P = 2 π L 3 . T_{\rm HP}=\frac{3}{2\pi L},\qquad \beta_{\rm HP}=\frac{2\pi L}{3}. T HP = 2 π L 3 , β HP = 3 2 π L .
Thermodynamic checks. From Z = e − I E Z=e^{-I_E} Z = e − I E ,
E = − ∂ β log Z = 3 π 8 G 5 ( μ + L 2 4 ) , S = ( 1 − β ∂ β ) log Z = π 2 r + 3 2 G 5 , E=-\partial_\beta\log Z=\frac{3\pi}{8G_5}\left(\mu+\frac{L^2}{4}\right),\qquad
S=(1-\beta\partial_\beta)\log Z=\frac{\pi^2 r_+^3}{2G_5}, E = − ∂ β log Z = 8 G 5 3 π ( μ + 4 L 2 ) , S = ( 1 − β ∂ β ) log Z = 2 G 5 π 2 r + 3 ,
so E E E splits into the black-hole mass plus the S 3 S^3 S 3 Casimir energy, and d E = T d S dE=T\,dS d E = T d S holds.
T < T H P T<T_{\rm HP} T < T HP : thermal AdS dominates (no horizon entropy), system behaves as a gas of singlet excitations; a black hole, if formed, evaporates back to thermal AdS.
T > T H P T>T_{\rm HP} T > T HP : the large AdS black hole dominates; the system has S ∼ O ( L 3 / G 5 ) S\sim \mathcal O(L^3/G_5) S ∼ O ( L 3 / G 5 ) and is thermodynamically stable.
Contrast with asymptotically flat space: there the Schwarzschild heat capacity is negative and no canonical equilibrium exists; AdS provides a natural “box,” enabling the phase structure.
With
f ( r ) = 1 + r 2 L 2 − μ r d − 2 , f(r)=1+\frac{r^2}{L^2}-\frac{\mu}{r^{d-2}}, f ( r ) = 1 + L 2 r 2 − r d − 2 μ ,
T ( r + ) = 1 4 π r + [ ( d − 2 ) + d r + 2 L 2 ] , S = Ω d − 1 r + d − 1 4 G d + 1 . T(r_+)=\frac{1}{4\pi r_+}\Big[(d-2)+d\,\frac{r_+^2}{L^2}\Big],\qquad
S=\frac{\Omega_{d-1}\,r_+^{d-1}}{4G_{d+1}}. T ( r + ) = 4 π r + 1 [ ( d − 2 ) + d L 2 r + 2 ] , S = 4 G d + 1 Ω d − 1 r + d − 1 .
The HP point is always at r + = L r_+=L r + = L with
T H P = d − 1 2 π L , r x = L d − 2 d at which T is minimal. T_{\rm HP}=\frac{d-1}{2\pi L},\qquad
r_x=L\sqrt{\frac{d-2}{d}}\ \text{ at which }T\text{ is minimal.} T HP = 2 π L d − 1 , r x = L d d − 2 at which T is minimal.
The free-energy difference (vs thermal AdS) is
Δ F = Ω d − 1 16 π G d + 1 L 2 r + d − 2 ( L 2 − r + 2 ) . \Delta F=\frac{\Omega_{d-1}}{16\pi G_{d+1}L^2}\,r_+^{\,d-2}\,(L^2-r_+^2). Δ F = 16 π G d + 1 L 2 Ω d − 1 r + d − 2 ( L 2 − r + 2 ) .
Via Z g r a v [ S β 1 × S d − 1 ] ≃ Z C F T [ S β 1 × S d − 1 ] Z_{\rm grav}[S^1_\beta\times S^{d-1}]\simeq Z_{\rm CFT}[S^1_\beta\times S^{d-1}] Z grav [ S β 1 × S d − 1 ] ≃ Z CFT [ S β 1 × S d − 1 ] at large N N N and strong coupling:
Thermal AdS ↔ \leftrightarrow ↔ confined phase.
F ∼ O ( 1 ) F\sim \mathcal O(1) F ∼ O ( 1 ) on S d − 1 S^{d-1} S d − 1 ; sparse spectrum of singlets. Polyakov loop vanishes in theories with a center.
Large AdS BH ↔ \leftrightarrow ↔ deconfined phase.
F ∼ O ( N 2 ) F\sim \mathcal O(N^2) F ∼ O ( N 2 ) ; many color degrees of freedom excited. Polyakov loop nonzero; center symmetry broken.
Planar limit. On R d − 1 \mathbb R^{d-1} R d − 1 the dual bulk solution is a black brane; its free-energy density is negative for all T > 0 T>0 T > 0 , so there is no HP transition (the CFT is “deconfined” at any nonzero T T T in infinite volume).
Euclidean regularity: starting from the near-horizon expansion, re-derive T = f ′ ( r + ) 4 π T=\tfrac{f'(r_+)}{4\pi} T = 4 π f ′ ( r + ) by requiring the absence of a conical defect.
Thermodynamic consistency: using I E I_E I E , verify that E = − ∂ β log Z E=-\partial_\beta\log Z E = − ∂ β log Z and S = ( 1 − β ∂ β ) log Z S=(1-\beta\partial_\beta)\log Z S = ( 1 − β ∂ β ) log Z reproduce the ADM mass (including the S 3 S^3 S 3 Casimir) and S = A / 4 G 5 S=A/4G_5 S = A /4 G 5 .
Cutoff matching: at r = R r=R r = R , match the proper thermal circles of the BH and thermal AdS and show explicitly that background subtraction yields the same Δ F \Delta F Δ F .
General d d d : from f ( r ) = 1 + r 2 L 2 − μ r d − 2 f(r)=1+\frac{r^2}{L^2}-\frac{\mu}{r^{d-2}} f ( r ) = 1 + L 2 r 2 − r d − 2 μ , derive T H P = ( d − 1 ) / ( 2 π L ) T_{\rm HP}=(d-1)/(2\pi L) T HP = ( d − 1 ) / ( 2 π L ) and the location of T min T_{\min} T m i n .
S. W. Hawking and D. N. Page, Thermodynamics of Black Holes in Anti–de Sitter Space , Commun. Math. Phys. 87 (1983) 577–588.
J. M. Maldacena, The Large N N N Limit of Superconformal Field Theories and Supergravity , Adv. Theor. Math. Phys. 2 (1998) 231.
E. Witten, Anti–de Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories , Adv. Theor. Math. Phys. 2 (1998) 505.
For counterterms and holographic renormalization: V. Balasubramanian and P. Kraus, Commun. Math. Phys. 208 (1999) 413; K. Skenderis, Class. Quant. Grav. 19 (2002) 5849.