Skip to content

Hawking–Page Transition

These notes combine a self-contained overview of the Hawking–Page (HP) transition with a step-by-step derivation of the renormalized on-shell Euclidean action in global AdS.

  • Black holes (1916) → black-hole thermodynamics (1973–1976).
    Area–entropy S=A/4GS=A/4G, Hawking temperature T=κ/2πT=\kappa/2\pi, and the four laws turn black holes into thermodynamic systems.
  • Hawking–Page (1983).
    In global AdS, equilibrium between radiation and a black hole is possible; comparing Euclidean actions reveals a first-order transition between thermal AdS and a spherical AdS–Schwarzschild black hole.
  • AdS/CFT (1997–1998).
    In the dual CFT on Sd1S^{d-1}, the HP transition is the confinement/deconfinement transition at large NN (Witten 1998).

1. Hawking temperature from Euclidean regularity

Section titled “1. Hawking temperature from Euclidean regularity”

For a static, spherically symmetric spacetime

ds2=f(r)dt2+dr2f(r)+r2dΩd12,ds^2=-f(r)\,dt^2+\frac{dr^2}{f(r)}+r^2 d\Omega_{d-1}^2,

Wick rotate tiτt\to -i\tau to obtain

ds2=f(r)dτ2+dr2f(r)+r2dΩd12.ds^2=f(r)\,d\tau^2+\frac{dr^2}{f(r)}+r^2 d\Omega_{d-1}^2.

Near the horizon r=r+r=r_+ with f(r+)=0f(r_+)=0, expand f(r)f(r+)(rr+)f(r)\approx f'(r_+)(r-r_+). The (τ,r)(\tau,r) sector becomes

ds2f(r+)(rr+)dτ2+dr2f(r+)(rr+).ds^2 \approx f'(r_+)(r-r_+)\,d\tau^2+\frac{dr^2}{f'(r_+)(r-r_+)}.

Define ρ2rr+f(r+)\rho\equiv \tfrac{2\sqrt{r-r_+}}{\sqrt{f'(r_+)}}, so

ds2dρ2+ρ2(f(r+)2dτ)2.ds^2\approx d\rho^2+\rho^2\Big(\tfrac{f'(r_+)}{2}\,d\tau\Big)^2.

Smoothness at ρ=0\rho=0 requires ττ+β\tau\sim\tau+\beta with period

β=4πf(r+),T=β1=f(r+)4πκ2π.\beta=\frac{4\pi}{f'(r_+)},\qquad T=\beta^{-1}=\frac{f'(r_+)}{4\pi}\equiv \frac{\kappa}{2\pi}.

With f(r)=1r0rf(r)=1-\tfrac{r_0}{r} (r0=2GMr_0=2GM):

T=14πr0=18πGM,S=A4G=πr02G.T=\frac{1}{4\pi r_0}=\frac{1}{8\pi GM},\qquad S=\frac{A}{4G}=\frac{\pi r_0^2}{G}.

Using M=r02GM=\tfrac{r_0}{2G}, the first law dM=TdSdM=T\,dS holds. In the canonical ensemble, F=MTSF=M-TS.

Path-integral viewpoint.

Z= ⁣DgeiS[g]tiτ ⁣DgeSE[g]eSE[g]=eβF,Z=\int\!\mathcal Dg\,e^{iS[g]}\xrightarrow{t\to -i\tau}\int\!\mathcal Dg\,e^{-S_E[g]} \simeq e^{-S_E[g_\ast]}=e^{-\beta F},

where the last step is the semiclassical saddle-point approximation (large parameter 1/G\sim 1/G).

Aside (Gaussian saddle). If IN=dxeNf(x)I_N=\int dx\,e^{Nf(x)} with N1N\gg1 and f(x)=0,f(x)<0f'(x_\ast)=0,f''(x_\ast)<0, then

IN2πNf(x)eNf(x).I_N\approx \sqrt{\frac{2\pi}{N|f''(x_\ast)|}}\,e^{Nf(x_\ast)}.

Work in global AdS5_5 with radius LL; the Euclidean boundary is Sβ1×S3S^1_\beta\times S^3 with fixed proper thermal circle length β\beta. Asymptotically,

ds2r2L2dτ2+L2r2dr2+r2dΩ32,ττ+β.ds^2\to \frac{r^2}{L^2}d\tau^2+\frac{L^2}{r^2}dr^2+r^2 d\Omega_3^2,\qquad \tau\sim\tau+\beta.

Saddles with these boundary data:

  1. Thermal AdS: f(r)=1+r2L2f(r)=1+\tfrac{r^2}{L^2}, no horizon.
  2. Small AdS black hole: unstable.
  3. Large AdS black hole: stable.

Both black holes share

ds2=f(r)dτ2+dr2f(r)+r2dΩ32,f(r)=1+r2L2μr2,ds^2=f(r)\,d\tau^2+\frac{dr^2}{f(r)}+r^2 d\Omega_3^2,\qquad f(r)=1+\frac{r^2}{L^2}-\frac{\mu}{r^2},

with horizon at r=r+r=r_+ and

μ=r+2(1+r+2L2).\mu=r_+^2\Big(1+\frac{r_+^2}{L^2}\Big).

Temperature and branches.

T(r+)=12πr+(1+2r+2L2),β(r+)=2πL2r+L2+2r+2.T(r_+)=\frac{1}{2\pi r_+}\Big(1+2\frac{r_+^2}{L^2}\Big),\qquad \beta(r_+)=\frac{2\pi L^2 r_+}{L^2+2r_+^2}.

TT has a minimum at rx=L/2r_x=L/\sqrt{2}:

Tmin=2πL.T_{\min}=\frac{\sqrt{2}}{\pi L}.

For T>TminT>T_{\min} both a small (unstable) and a large (stable) black hole exist at the same TT. The horizon area A=2π2r+3A=2\pi^2 r_+^3 yields

SBH=A4G5=π2r+32G5.S_{\rm BH}=\frac{A}{4G_5}=\frac{\pi^2 r_+^3}{2G_5}.

4. Canonical ensemble and renormalized on-shell action (AdS5_5)

Section titled “4. Canonical ensemble and renormalized on-shell action (AdS5_55​)”

We evaluate

Zgrav(β)=DgeIE[g]ieIE(i)(β),Z_{\rm grav}(\beta)=\int\mathcal D g\,e^{-I_E[g]}\simeq \sum_i e^{-I_E^{(i)}(\beta)},

with the renormalized Euclidean action

IE[g]=116πG5 ⁣M ⁣d5xg(R+12L2)18πG5 ⁣M ⁣d4xγK+Ict[γ].I_E[g]=-\frac{1}{16\pi G_5}\!\int_{M}\! d^5x \sqrt{g}\,(R+\tfrac{12}{L^2}) -\frac{1}{8\pi G_5}\!\int_{\partial M}\! d^4x \sqrt{\gamma}\,K +I_{\rm ct}[\gamma].

For a 4D boundary,

Ict[γ]=18πG5 ⁣M ⁣d4xγ(3L+L4R[γ]).I_{\rm ct}[\gamma]=\frac{1}{8\pi G_5}\!\int_{\partial M}\! d^4x \sqrt{\gamma}\left(\frac{3}{L}+\frac{L}{4}R[\gamma]\right).

Below we compute IEI_E for the spherical AdS–Schwarzschild saddle at a cutoff r=Rr=R and then send RR\to\infty. Denote Ω3=Vol(S3)=2π2\Omega_3=\mathrm{Vol}(S^3)=2\pi^2 so that Ω3/(16π)=π/8\Omega_3/(16\pi)=\pi/8.

On shell R=20/L2R=-20/L^2, hence R+12/L2=8/L2R+12/L^2=-8/L^2. With g=r3\sqrt{g}=r^3,

Ibulk(bh)(R)=116πG5d5xg(8L2)=βΩ38πG5L2r+Rr3dr=β4G5L2π(R4r+4).\begin{aligned} I_{\rm bulk}^{\rm (bh)}(R) &=-\frac{1}{16\pi G_5}\int d^5x\sqrt{g}\left(-\frac{8}{L^2}\right) =\frac{\beta\,\Omega_3}{8\pi G_5 L^2}\int_{r_+}^R r^3\,dr\\ &=\frac{\beta}{4G_5L^2}\,\pi\,(R^4-r_+^4). \end{aligned}

Writing ds2=N2dr2+γijdxidxjds^2=N^2dr^2+\gamma_{ij}dx^i dx^j with N2=1/fN^2=1/f and γijdxidxj=fdτ2+r2dΩ32\gamma_{ij}dx^i dx^j=f\,d\tau^2+r^2 d\Omega_3^2, the extrinsic curvature is

K=f(f2f+3r),γ=fr3.K=\sqrt{f}\Big(\frac{f'}{2f}+\frac{3}{r}\Big),\qquad \sqrt{\gamma}=\sqrt{f}\,r^3.

Therefore

IGH(bh)(R)=βΩ38πG5R3ff(f2f+3R)=βπ4G5(R3f2+3R2f)=βπ4G5(4R4L2+3R22μ),\begin{aligned} I_{\rm GH}^{\rm (bh)}(R) &=-\frac{\beta\,\Omega_3}{8\pi G_5}\,R^3\sqrt{f}\,\sqrt{f}\Big(\frac{f'}{2f}+\frac{3}{R}\Big)\\ &=-\frac{\beta\,\pi}{4G_5}\Big(\frac{R^3 f'}{2}+3R^2 f\Big)\\ &=-\frac{\beta\,\pi}{4G_5}\Big(\frac{4R^4}{L^2}+3R^2-2\mu\Big), \end{aligned}

using f(R)=1+R2L2μR2f(R)=1+\frac{R^2}{L^2}-\frac{\mu}{R^2} and f(R)=2RL2+2μR3f'(R)=\frac{2R}{L^2}+\frac{2\mu}{R^3}.

For γij=diag(f(R),R2gS3)\gamma_{ij}=\mathrm{diag}(f(R),R^2 g_{S^3}), the intrinsic scalar curvature is R[γ]=6/R2R[\gamma]=6/R^2. Hence

Ict(bh)(R)=βΩ38πG5R3f(3L+3L2R2)=βπ4G5 ⁣(3R3fL+3L2Rf).I_{\rm ct}^{\rm (bh)}(R)=\frac{\beta\,\Omega_3}{8\pi G_5}\,R^3\sqrt{f}\left(\frac{3}{L}+\frac{3L}{2R^2}\right) =\frac{\beta\,\pi}{4G_5}\!\left(\frac{3R^3\sqrt{f}}{L}+\frac{3L}{2}R\sqrt{f}\right).

At large RR,

f(R)=RL+L2RL38R3μL2R3+,\sqrt{f(R)}=\frac{R}{L}+\frac{L}{2R}-\frac{L^3}{8R^3}-\frac{\mu L}{2R^3}+\cdots,

so

Ict(bh)(R)=βπ4G5(3R4L2+3R2+38L232μ+).I_{\rm ct}^{\rm (bh)}(R)=\frac{\beta\,\pi}{4G_5}\Big(\frac{3R^4}{L^2}+3R^2+\frac{3}{8}L^2-\frac{3}{2}\mu+\cdots\Big).

Summing Ibulk+IGH+IctI_{\rm bulk}+I_{\rm GH}+I_{\rm ct}, the R4R^4 and R2R^2 divergences cancel. The finite remainder is

IE(bh)=βπ8G5L2(r+2L2r+4+34L4),I_E^{\rm (bh)}=\frac{\beta\,\pi}{8G_5L^2}\left(r_+^2L^2-r_+^4+\frac{3}{4}L^4\right),

using μ=r+2(1+r+2/L2)\mu=r_+^2(1+r_+^2/L^2).

Repeat with f0(r)=1+r2L2f_0(r)=1+\frac{r^2}{L^2} (integrate from r=0r=0). One obtains

IE(th)=βπ8G5L2(34L4).I_E^{\rm (th)}=\frac{\beta\,\pi}{8G_5L^2}\left(\frac{3}{4}L^4\right).

A background-subtraction derivation yields the same difference and is equivalent after matching the proper length of the thermal circle at the cutoff.

4.6 Free energy and Hawking–Page crossing

Section titled “4.6 Free energy and Hawking–Page crossing”

With F=IE/βF=I_E/\beta, the scheme-independent difference is

ΔFFbhFth=π8G5L2(r+2L2r+4)=πr+28G5(1r+2L2).\Delta F \equiv F_{\rm bh}-F_{\rm th} =\frac{\pi}{8G_5L^2}\Big(r_+^2L^2-r_+^4\Big) =\frac{\pi r_+^2}{8G_5}\Big(1-\frac{r_+^2}{L^2}\Big).

Thus the dominant saddle changes at r+=Lr_+=L. Using T(r+)T(r_+) from above,

THP=32πL,βHP=2πL3.T_{\rm HP}=\frac{3}{2\pi L},\qquad \beta_{\rm HP}=\frac{2\pi L}{3}.

Thermodynamic checks. From Z=eIEZ=e^{-I_E},

E=βlogZ=3π8G5(μ+L24),S=(1ββ)logZ=π2r+32G5,E=-\partial_\beta\log Z=\frac{3\pi}{8G_5}\left(\mu+\frac{L^2}{4}\right),\qquad S=(1-\beta\partial_\beta)\log Z=\frac{\pi^2 r_+^3}{2G_5},

so EE splits into the black-hole mass plus the S3S^3 Casimir energy, and dE=TdSdE=T\,dS holds.


  • T<THPT<T_{\rm HP}: thermal AdS dominates (no horizon entropy), system behaves as a gas of singlet excitations; a black hole, if formed, evaporates back to thermal AdS.
  • T>THPT>T_{\rm HP}: the large AdS black hole dominates; the system has SO(L3/G5)S\sim \mathcal O(L^3/G_5) and is thermodynamically stable.
  • Contrast with asymptotically flat space: there the Schwarzschild heat capacity is negative and no canonical equilibrium exists; AdS provides a natural “box,” enabling the phase structure.

6. Generalization to AdSd+1_{d+1} (spherical horizon)

Section titled “6. Generalization to AdSd+1_{d+1}d+1​ (spherical horizon)”

With

f(r)=1+r2L2μrd2,f(r)=1+\frac{r^2}{L^2}-\frac{\mu}{r^{d-2}}, T(r+)=14πr+[(d2)+dr+2L2],S=Ωd1r+d14Gd+1.T(r_+)=\frac{1}{4\pi r_+}\Big[(d-2)+d\,\frac{r_+^2}{L^2}\Big],\qquad S=\frac{\Omega_{d-1}\,r_+^{d-1}}{4G_{d+1}}.

The HP point is always at r+=Lr_+=L with

THP=d12πL,rx=Ld2d  at which T is minimal.T_{\rm HP}=\frac{d-1}{2\pi L},\qquad r_x=L\sqrt{\frac{d-2}{d}}\ \text{ at which }T\text{ is minimal.}

The free-energy difference (vs thermal AdS) is

ΔF=Ωd116πGd+1L2r+d2(L2r+2).\Delta F=\frac{\Omega_{d-1}}{16\pi G_{d+1}L^2}\,r_+^{\,d-2}\,(L^2-r_+^2).

Via Zgrav[Sβ1×Sd1]ZCFT[Sβ1×Sd1]Z_{\rm grav}[S^1_\beta\times S^{d-1}]\simeq Z_{\rm CFT}[S^1_\beta\times S^{d-1}] at large NN and strong coupling:

  • Thermal AdS \leftrightarrow confined phase.
    FO(1)F\sim \mathcal O(1) on Sd1S^{d-1}; sparse spectrum of singlets. Polyakov loop vanishes in theories with a center.
  • Large AdS BH \leftrightarrow deconfined phase.
    FO(N2)F\sim \mathcal O(N^2); many color degrees of freedom excited. Polyakov loop nonzero; center symmetry broken.

Planar limit. On Rd1\mathbb R^{d-1} the dual bulk solution is a black brane; its free-energy density is negative for all T>0T>0, so there is no HP transition (the CFT is “deconfined” at any nonzero TT in infinite volume).


  1. Euclidean regularity: starting from the near-horizon expansion, re-derive T=f(r+)4πT=\tfrac{f'(r_+)}{4\pi} by requiring the absence of a conical defect.
  2. Thermodynamic consistency: using IEI_E, verify that E=βlogZE=-\partial_\beta\log Z and S=(1ββ)logZS=(1-\beta\partial_\beta)\log Z reproduce the ADM mass (including the S3S^3 Casimir) and S=A/4G5S=A/4G_5.
  3. Cutoff matching: at r=Rr=R, match the proper thermal circles of the BH and thermal AdS and show explicitly that background subtraction yields the same ΔF\Delta F.
  4. General dd: from f(r)=1+r2L2μrd2f(r)=1+\frac{r^2}{L^2}-\frac{\mu}{r^{d-2}}, derive THP=(d1)/(2πL)T_{\rm HP}=(d-1)/(2\pi L) and the location of TminT_{\min}.

  • S. W. Hawking and D. N. Page, Thermodynamics of Black Holes in Anti–de Sitter Space, Commun. Math. Phys. 87 (1983) 577–588.
  • J. M. Maldacena, The Large NN Limit of Superconformal Field Theories and Supergravity, Adv. Theor. Math. Phys. 2 (1998) 231.
  • E. Witten, Anti–de Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories, Adv. Theor. Math. Phys. 2 (1998) 505.
  • For counterterms and holographic renormalization: V. Balasubramanian and P. Kraus, Commun. Math. Phys. 208 (1999) 413; K. Skenderis, Class. Quant. Grav. 19 (2002) 5849.